Recommendations for no-compliance in (chemo)radiotherapy treatments

Session 3 – Actions: How to prevent and recover no-compliance

Karin Haustermans

Introduction

RT fractionation schedules

- Conventional fx: 1.8 2.0 Gy/fx
- Hyperfx: reduced dose/fx over a conventional OTT, multiple fx/day*
- Accelerated fx: reduced OTT with conventional dose/fx, multiple fx/day*
- Hypofx: higher dose/fx over a reduced conventional OTT

Conventional fractionation 35 fractions, 2 Gy M-F, Total 66-70 Gy; 7 weeks

Hyperfractionation 70 fractions, 1.15 Gy BID M-F, Total 80.5 Gy; 7 weeks (EORTC 22791)

Accelerated fractionation 35 fractions, 2 Gy 6 fx/wk, Total 66-68 Gy; 5 weeks 4 days (DAHANCA)

Hypofractionation 30 fractions, 2.2 Gy M-F, Total 66 Gy; 6 weeks (RTOG 0022)

CRT in clinical practice

 CRT is successfully being applied in many solid tumors

Table 1 Overview of disease entities and indications in which concurrent chemoradiotherapy is used. ^a						
Disease entity	Indication and treatment Commonly used agent		Benefit			
Upper aerodigestive tract cancers						
Head and neck cancer	Locally advanced HNC— primary or adjuvant treatment	Cisplatin, 5-FU, FHX, cetuximab	Improved organ preservation and survival compared with radiation alone			
Non-small-cell lung cancer	Stage IIIB, nonoperable nonmetastatic disease	Cisplatin, carboplatin/ paclitaxel, cisplatin/etoposide	Curative approach in poor surgical candidates or IIIB disease			
Small-cell lung cancer	Limited stage disease	Cisplatin/etoposide	Curative in ~20% of patients			
Esophageal cancer	Locally advanced disease	Cisplatin/5-FU	Survival benefit, increased cure rates, organ preservation			
Gastrointestinal malignancies						
Rectal cancer	Neoadjuvant	5-FU	Improved sphincter preservation, decrease in local and distal failures			
Anal cancer	Mainstay of curative treatment	5-FU, MMC	Improved organ preservation			
Gastric cancer	Adjuvant	Cisplatin, 5-FU	Some data indicate a survival benefit			
Pancreatic cancer	Adjuvant, unresectable locoregionally advanced tumors	5-FU	Improved locoregional control, possibly a survival benefit			
Cholangiocarcinoma	Adjuvant, unresectable locoregionally advanced tumors	5-FU	Some data indicate a survival benefit			
Gynecological and genitourinary cancers						
Cervical cancer	Primary modality	Cisplatin, 5-FU, hydroxyurea	Improved local and distal control, organ preservation			
Bladder cancer	Primary modality	Cisplatin	Improved local control			
Other cancers						
Glioblastoma	Adjuvant	Temozolomide	Survival benefit			
Sarcoma	Neoadjuvant	Doxorubicin	Downstaging, improved organ preservation			

^aThis is a limited overview, and concurrent chemoradiotherapy is used in most solid tumors either as a standard treatment or investigationally. For further details please refer to the organ-specific literature. Abbreviations: 5-FU, 5-fluorouracil; FHX, 5-FU, hydroxyurea and radiation; HNC, head and neck cancer; MMC, mitomycin C.

Combined treatment schedules

- Combined treatment schedule
 - Sequential association
 - Induction or adjuvant
 - When target cell populations are different

- TOGETHER) TOGETHER) APART
- To optimize the dose intensity of chemo and RT in both chemo- and radiosensitive disease
- Concomitant association
 - When cellular and molecular interactions are used to improve loco-regional control
 - Increased early and late normal tissue toxicity
- Key benefit in clinical setting: inhibition of tumor cell proliferation by drugs during radiation inter-fraction interval

Rationale for adding chemo to RT

Spatial and in-field cooperation

Seiwert, Nat Clin Pract Oncol 2007

Rationale for adding chemo to RT

- Cytokinetic cooperation/synchronization
- Interference with RT-induced DNA damage and repair

Rationale for adding chemo to RT

	DNA dama	ge induction repair	Chromosome aberrations	Cell cycle	Apoptosis	Reoxygenation
Anti-metabolites						
5-Fluorouracil	_	±	_	+	?	?
Methotrexate	?	?	?	?	?	?
Hydroxyurea	?	±	+	+	?	?
Gemcitabine	_	-	+	+	—	+
Fludarabine	-	-	+	+	-	?
Alkylating agents						
Cisplatin	+?	+	?	_	?	?
BCNU	?	+	<u> </u>	?	?	?
Cyclophosphamide	?	?	-	?	?	?
Topoisomerase inhi	bitors					
Etoposide	?	+	-1	+	+	?
Camptothecin	?	?	_	±	±	±
Adriamycin	_	±	±	+	?	?
Anti-microtubule a	gents					
Vinca-alkaloids	?	_	?	+	?	?
Taxanes	?	_	+	+	+	+
Antibiotics						
Mitomycin-C	?	?		?	?	?
Bleomycin	?	_	±	+	?	?
Actinomycin-D	?	+?	?	?	_	. <u> </u>

Table 19.4 Summary of the pre-clinical data regarding the mechanisms of interaction between ionizing radiation and chemotherapeutic agents

Note: '-': not demonstrated; '+': demonstrated; '±': conflicting data; '?': unknown.

Abbreviation: BCNU: β-chloro-nitrosourea.

5th edition Basic Clinical Radiobiology Joiner & van der Kogel

Molecular targeted agents

Molecular targeted agents & RT

No-compliance: what is the problem?

- Delivery of (C)RT not according to standard is known to lead to
 - A reduced tumor control
 - Geographic misses (GTV-CTV)
 - Underdosage of PTV
 - Underdosage of systemic treatment
 - An increase in serious adverse events
 - Exceeding tolerance levels of organs at risk

→ Negative therapeutic effect

No-compliance: what is the problem?

- Delays or interruptions in (C)RT cause an increase in overall treatment time and are known to lead to
 - The development of (C)RT resistance
 - Multiple mechanisms: mutated p53, DNA repair gene amplification, increased levels of ROS scavengers, activation of prosurvival or poor prognostic oncogenes (EGFR, c-MET)
 - Allow resistant cells to repopulate
 - Regrowth of tumor cells between doses of RT or CT
 - Accelerated repopulation: treatment failure and emergence of true radioresistance

→ Negative therapeutic effect

How to prevent no-compliance in (C)RT?

Due to patient-related factors

Severe radiation reactions

→ Importance of correct patient information & education: establish good communication and gain patient's trust, explain accurately about disease, treatment and potential side-effects, answer questions

 \rightarrow Importance of good side effects care

Intercurrent disease

→ Discuss with your colleagues from other departments involved what needs to be prioritized

Due to logistic factors

• Transport difficulties

- Involve social work or a case manager to look into possible solutions for transport difficulties, e.g. taxi service, accommodation close to the hospital...
- Consider hypofractionated treatment schedules to limit the number of trips
- Public holidays
 - Take these into account when designing the treatment plan
- Treatment machine downtime due to preventive maintenance
 - Try to plan preventive maintenance after hours or during weekends as much as possible

How to recover no-compliance in (C)RT?

Implementation of RTQA

Crucial to ensure compliance with current standards to safely and effectively administer RT!

Impact of RT protocol-deviations on patient's outcome in prospective phase II-III trials Table 2 Results of QART assessment with patient outcome in prospective clinical trials.

No-compliance to protocolspecified RT requirements is associated with reduced survival, local control and potentially increased toxicity

Study [ref]	Type of QA	Number of cases evaluated n (%)	Minor deviations n (%)	Major deviations n (%)	Technical issues with QA review n (%)	Impact on clinical outcome	p Value
HD 4 [5]	R	368 (98.0)	-	141 (37.5)*	8 (2.1)	7-year RFS with D: 72% vs. 7-year RFS with no D: 84%	0.004
EORTC 20884 [2]	R	135 (88.8)	-	63 (46.7)	46 (30.3)	5-year RFS with 0: 90% vs. 5-year RFS without D: 84%	0.31
RTOG 0411 [4]	R	NS	-	13 (13.4)	NS	Grade GI \ge 3 toxicity with D:45% [†] vs.	0.05
RTOG 9704 [1]	R	416 (92.2)	-	200 (48.0)**	14/35 (40.0)†	mOS with D: 1.46 yo	0.008
RTOG 0022 [8]	R	67 (97.0)	47 (89.0)	6(11.0)	14/67 (21.0)	LRF with major D: 50%	0.04
TROG 0202 [15]	P & R ^{††}	687 (80.5) ^{‡‡}	-	97 (11.8)	33/820 (4.0)	OS with major D: 70% vs. OS without major D: 50%	<0.001

Abbreviations: R, retrospective; P, prospective; LRF, local-regional failures; D, deviations; mOS, median overall survival; RFS, relapse-free survival; GI, gastro-intestinal; NS, not specified.

Scenario 1 RTQA

Potential solutions: RTQA

- RTQA undertaken in 'real time' prior to treatment for the first 5 pts randomized to CRT from each center
 - If major violations identified, an additional two cases were submitted for RTQA
 - Once acceptable quality was achieved, RTQA was completed for one third of subsequent cases (randomly selected)

- Review included:
 - *Pre-treatment review:* to ensure appropriate CTV coverage
 - Post-treatment review: to assess compliance of RT delivery with protocol guidelines after completion of RT

Median time from QA to treatment start date (days) over time

Scenario 2 Chemo not prepared in due time

Consider treatment interactions

- Consider mechanism(s) of treatment interaction of the particular chemotherapeutic drug(s) and RT
- Concomitant?
 - Still possible to deliver chemo on the same day?
- Sequential?
 - Still possible to deliver chemo according to schedule?

Process affected	Mechanism ^a	Drug examples		
riocess anected				
Increased radiation damage ^a	Incorporation of chemotherapy drug into DNA/RNA	5-FU: incorporation into DNA, increasing susceptibility to RT damage		
		Cisplatin: cross-links with DNA or RNA (intrastrand and interstrand); works for both hypoxic and oxygenated cells ⁵¹		
Inhibition of DNA repair process ^a	Interference with the DNA repair process after radiation	Halogenated pyrimidines (e.g. 5-FU, bromodeoxyuridine, iododeoxyuridine)		
		Nucleoside analogs (e.g. gemcitabine, fludarabine)		
		Cisplatin		
		Methotrexate		
		Camptothecins and doxorubicin		
		Etoposide		
		Hydroxyurea		
		Carmustine, Iomustine		
Cell-cycle interference (cytokinetic cooperation and synchronization) ^a	Most cytotoxic chemotherapies as well as radiation	Taxanes lead to cell-cycle arrest via tubulin stabilization		
	are cell-cycle-specific, and proliferating cells are most susceptible	Nucleoside analogs (e.g. gemcitabine, fludarabine), etoposide, methotrexate, hydroxyurea		
	Accumulation of cells in the G2 and M phases (the most radiosensitive phases)			
	Elimination of radioresistant cells in the S phase			
Enhanced activity against hypoxic cells ^a	Reoxygenation second to tumor shrinkage. Hypoxic cells are 2.5–3.0 times less radiation-sensitive than	Most chemotherapeutic agents; described in particular for pacilitaxel ⁴⁵		
	normoxic cells ^{18,44}	Tirapazamine, mitomycin (selective killing of hypoxic cells):		
	Chemotherapy can help to eliminate hypoxic cells	nitroimidazoles (resensitize hypoxic cells to radiation)		
Radiotherapy enhancement by preventing repopulation ^a	Systemic therapy can slow or stop rapid proliferation, which could otherwise be the basis for repopulation phenomenon	Most chemotherapeutic agents, in particular:		
		Antimetabolites with activity in the S phase inhibit repopulation (e.g. 5-FU, hydroxyurea)		
		EGFR inhibitors, which impede cell proliferation between RT fractions 100		
Inhibition of prosurvival and 'poor prognosis' markers ^a	Targeted therapies (best demonstrated for EGFR inhibition) block signaling pathways that might be responsible for radioresistance and poor prognosis	EGFR inhibitors—shown for anti-EGFR antibody, PKI- 166 (small-molecule TKI), and EGFR antisense, ^{129–131} but on the basis of clinical experience likely to be a class effect ^{49,132}		
Hyperradiation sensitivity ^b	HNSCC cells resistant to standard-fraction CRT can be resensitized to CRT by using smaller fraction sizes	Effect demonstrated for taxane-based CRT including pacilitaxel as well as docetaxel ^{29,50}		
	(<1 Gy) more frequently	Low-dose fraction radiation		

^aChemoradiotherapy potentiation through drug addition. ^bChemoradiotherapy potentiation through alteration in radiation administration. Abbreviations: 5-FU, 5fluorouracil; CRT, chemoradiotherapy; HNSCC, head and neck squarnous cell carcinoma; RT, radiotherapy; TKI, tyrosine kinase inhibitor.

Scenario 3 Machine breakdown

- Consider tumor type
 - Prolongation of OTT is mainly problematic for HNSCC, NSCLC, cancer of the uterine cervix
 - It occurs in all tumors even in prostate cancer

• Adapt treatment schedule after the gap

- Accelerated radiation schemes
 - For planned schedule delivering 1 fx per day, 5 days per week, this can be accomplished by giving more than 5 fx per week by
 - Giving 2 fx per day or
 - By treating on Saturday and/or Sunday
 - Aim to deliver planned total dose, with prescribed dose per fraction, in as near the planned OTT as possible

• Adapt treatment schedule after the gap

- Hypofractionated radiation schedule
 - Risk of increased late sequelae or decreased tumor control?
 - Depends on the exact values of α/β values for the relevant late normal tissue endpoints and the tumor type in question.

Adapt treatment schedule after the gap

- Hypofractionated radiation schedule
 - An example...

A patient with colorectal cancer is planned to receive pre-operative RT with 5×5 Gy from Monday to Friday. The first 2 fx are given as planned on Mon and Tue, but due to a machine breakdown, no treatment could be given on Wedn.

It is assumed to deliver the isoeffective tumor dose by increasing the size of the 2 fx to be given on Thu and Fri in order to finish as planned on Fri. We assume that the α/β = 10 Gy for colorectal cancer.

What is the required dose per fx for the last 2 fx? What is the accompanying change in risk of rectal complications for this modified fractionation schedule?

- Adapt treatment schedule after the gap
 - Hypofractionated radiation schedule
 - An example...

what is the required dose per fx for the last 2 fx?

Solution: 6,7 Gy / fx on Thu and Fri, a total of 13,4 Gy to achieve the same tumor effect

- \rightarrow less than the 3 x 5 Gy originally planned for Wedn-Fri
- \rightarrow reason: larger effect per Gy deriving from the increased dose per fx

How will this affect risk of bowel damage $(\alpha/\beta = 4 \text{ Gy})$? EQD2 modified schedule = 38,9 Gy vs 37,5 Gy for 5 x 5 Gy schedule \rightarrow increased risk of late bowel morbidity

Consider to stick to 5 Gy / fx and give the 5th fx on Sat or simply accept a 3 day protraction (finishing on Mon)

- Change linac or treatment modality in order to avoid a gap or delay in treatment
 - Compatible Linacs (back-up plans)
 - Consider back-up treatment with photons in case of downtime of proton therapy machine

Scenario 4 Patient does not show up for (C)RT

- Impact depends on timing: before or during treatment
- Try to reach the patient asap to understand the problem (patient-related, logistic)
- Try to find a solution / convince the patient (or his/her family)

Scenario 5 Pandemic

- Covid-19 reached Belgium in Feb 2020
- Weekly survey March-June 2020
- Sent to all 26 RT depts (RTD)
 - 73% completed first survey
 - 57% responded to all weekly surveys
- COVID-19 status of patients and staff
 - 24 members COVID-positive, of which 67% RTTs

FIGURE 1 | Cumulative number of RTD staff members tested and number of staff tested positive for COVID-19: for (A) Radiation Oncologists (RO); (B) Medical Physics Experts (MPE) and Medical Physics Assistants (MPA); (C) Radiation therapists (RTTs) and (D) Administrative staff.

Impact of Covid-19 on RTD activities

The number of patients treated dropped by a maximum of 18.8% when compared to March 2nd, 2020

Decrease in the number of both curative and palliative treatments until the end of April 2020—at which time there is a sudden increase in the number of palliative treatments up to 18.2% as compared to the baseline week

For clinically suspected COVID-positive patients treatment was interrupted in 28% of patient and delayed in 12% of patients. For COVID positive patients, the treatment was either delayed or interrupted In 20% of the positive cases. In 14% the treatment was prematurely stopped and in 6% of patients another element impacted the treatment.

Changes of RT indications

Changes of RT fractionation schemes

FIGURE 6 (A) Percentage of departments having changed their radiotherapy indication per pathology. (B) Percentage of departments having changed their radiotherapy fractionation schemes per pathology.

Recommendations

Tip #1 – Remember radiobiology*

 Think about what you've learned about the R's of radiobiology, working mechanisms and interactions of chemo, MTA, immuno,...

Tip #2 – Communicate

- With your team (RTTs, MDs, residents, dosimetrists, medical physicists...)
- With your colleagues from other departments (medical oncology, pediatric oncology...)

Tip #3 – Document

- Any no-compliance
- The adjustments/changes made
- As soon as possible
- In the (electronic) patient file

Tip #4 – Be prepared

• Try to anticipate what you can and implement RTQA

Conclusions

- To prevent a negative therapeutic effect of no-compliance in (C)RT
 - Avoid treatment gaps as much as possible
 - Actively modify treatment after a gap
 - Mainly in HNSCC, NSCLC, cancer of the uterine cervix
 - Also some support for importance of OTT in SCC of the skin and vagina, and in medulloblastoma
- Communication and documentation is key!
- The RT community is flexible: change of practice (RT indications and fractionation schedules) was rapidly incorporated in the different RT depts due to covid-19.